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Abstract—Driver classification is used recently for vehicle anti-
burglary and fake driver accounts based on driving behavior.
Anti-burglary is a challenging problem as it leans on external de-
vices to defend against vehicle theft. Several researchers analyzed
the driving behavior to identify drivers, but they faced several
challenges to produce a stable model for the cold start problem
and for medium-long sequences. In addition, some approaches
had an unpleasant performance when the action space increased
(> 2 drivers). In this paper, we propose a novel approach
named OnlineDC (Online Driver Classification), which leverages
temporal driving behavior to identify a human subject behind
the wheel. Our method utilizes the Gated Recurrent Unit (GRU)
and the ResNet with the Squeeze-Excite blocks (SE) to analyze
the long-short term patterns of driving behaviors. Moreover,
we fostered the performance by building and applying the
Feature Generation (FG) algorithm to extract spectral, temporal,
and statistical features from the sensing data of vehicles. We
conducted extensive experiments to show how our approach
outperformed state-of-the-art baseline methods. The results also
showed that our solution could resolve the cold-start problem for
short patterns.

Index Terms—Driver Classification, Cybersecurity,
Learning, Neural Network, Internet of Things.
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I. INTRODUCTION

Vehicle burglary is ubiquitous around the world, and numer-
ous victims of theft have suffered the loss of their properties.
For instance, the Federal Bureau of Investigation (FBI) an-
nounced in fall 2019 that there were approximately 748,841
thefts of motor vehicles in the United States last year'. Several
approaches were used to address the burglary issue.

Most early studies in the driver identification domain mainly
focused on biometric approaches. These technologies have key
hindrances such as low accuracy that negatively impact imple-
menting large scale applications, economic reasons for the car
manufacturers to implement them, and privacy issues [1], [2].

Current cars’ security systems have some problems. For
example, vehicle manufacturers embed a security device con-
taining GPS in a secret part of a vehicle to send its geolo-
cation [3], to facilitate finding it when lost. However, the
device does not prevent a burglary in advance, and numerous
drivers might consider GPS as an invasion of their privacy.
Furthermore, car manufacturers used onboard systems inside

Uhttps://ucr.fbi.gov/crime-in-the-u.s/2018/crime-in-the-u.s.-2018/
topic-pages/motor-vehicle-theft (2019), [Last Access 8/3/2021]

vehicles for the anti-burglary purpose. However, the controller
exposed an opportunity to reverse engineer the technology to
steal the vehicle. For instance, a BBC report 2 mentioned that
even though some cars were implemented onboard systems for
securing cars where a driver had a fob to start a car, thieves
targeted some of these cars and remotely stole them. As a
result, many car insurances forced drivers to have external
devices.

Sensors embedded in vehicles are essential for modern
control systems for driving safety. These data can be extracted
through the OBD (On-Board Diagnostics) port. The original
use of these data was for maintenance. Vehicular Ad-hoc
Networks (VANETS) utilize these sensor data and the vehicle’s
communication from the surrounding other vehicles’ sensors
and communication to produce several applications. Recently,
researchers started using data from car sensors for the driver
classification problem and employing the highest similarity for
driver verification [4].

Using driving behaviors (i.e., sensing data) is another ap-
proach to detect car burglary by applying Deep Learning
approaches and supervised tree-based/ lazy classification al-
gorithms to identify drivers. Researchers made different use
of such data. For example, Virojboonkiate er al. [5] extracted
100 sensing data and generated 100 histograms to be trained
in a neural network (NN) with accuracy (below 76%). While,
Ferreira et al. [6] used datasets with a short time window (<
8 seconds) applying the Multi-Layer Perceptron (MLP). Like-
wise, Jeong et al. [7] analyzed driver behavior for a medium
to a long time window (from 75 to 4860 seconds) and only
4 drivers, using the three ConvlD layers. Moreover, Kwak
et al. and Martinelli et al. [8], [9] employed Random Forest,
XGBoosting, and J48, but the performance in the proposed
approach by Kwak er al. [8] dramatically declined after the
action space increased (i.e., increasing the number of drivers
from 2 to 3, 4, and 5). Another approach was suggested by
Martinelli et al. [10], who applied the KNN, SVM, Gaussian
Process, Decision Tree, Random Forest, AdaBoost, Naive
Bayes, and Logistic algorithms. They suggested using the Lazy
algorithm (KNN) to classify drivers according to their driving

Zhttps://www.bbc.com/news/technology-29786320 (2014), [Last Access
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behaviors. The main issue of KNN is its lazy nature, which
makes its algorithm not scalable for online driver applications
with a large number of driver behaviors as KNN needs a longer
time to evaluate the test examples. Furthermore, Rahim et
al. [11] used GPS data to train the Random Forest algorithm.
Whereas, GPS may be considered by several people as an
invasion of their privacy. However, all these previous works
had several limitations or issues. The neural networks were
shallow or not suitable to learn from driving behaviors. Also,
some approaches may not extract adequate features to enhance
the identification model, and some of them did not extract
any feature from sensing data. These approaches suffered from
providing high accuracy in the cold start problem when given a
little driving behavior, and for long term patterns. It is essential
for the classification model to generate a stable model with
different lengths of senor sequences. Moreover, Kwak et al. [4]
suggested an alarm system that would inform the owner of
the vehicle and a vehicle monitoring company in case of a
burglary event based on the driving behavior. However, the
response time for the alarm notification is crucial (e.g., 10
seconds).

Ride-sharing services like Uber and Lyft on the taxi industry
may need long lengths of signals to identifying fake driver ac-
counts for security and administration purposes. For example,
Uber created 60 thousand jobs in China in May 2015°, where
several drivers attempted to manipulate the system to get more
bonuses through having several accounts as mentioned in an
article in Quartz*. A manual monitoring approach made it hard
to find fake accounts among all Uber drivers in China or any
other country. An automatic stable driver classification models
using machine learning techniques can help to address this
problem.

A stable driver classification model has to address these two
requirements (i.e., providing high performance identification
for a short and a long time series) for a reasonable number of
drivers (e.g., 10). Our proposed approach has high accuracy
between 90% and 97%, for different driving intervals from 10
seconds to 25 minutes having 14 drivers.

To address these problems of short and long window size as
well as the size of action space keeping high performance, we
propose OnlineDC (i.e., Online Driver Classification), which is
a data-driven approach. OnlineDC is based on a Deep Learning
model to identify drivers from driving behaviors while keeping
high accuracy. We first decrease the data dimensionality using
two signal selection algorithms (Chi-square [12], [13], and
Univariate linear regression [14]). After that, we generate 8§82
features using our proposed feature generation algorithm (FG)
which has fixed the input space for any length of multivariate
time series (signals) to increase the scalability of OnlineDC.
As a result, we trained our classifier only between 43 and 46
seconds for different signals’ lengths. Finally, we use our new
neural network (MGRU-ResSE) to identify drivers with high

3https://www.usatoday.com/story/tech/columnist/stevenpetrow/2016/10/12/
fake-uber-drivers-dont-become-next-victim/91903508/

“https://qz.com/423288/fake-drivers-and-passengers-are-boosting-ubers-
growth-in-china/

performance. MGRU-ResSE utilizes Gated Recurrent Unit
(GRU) and ResNet with the squeeze and excite blocks.

Our main contributions in this paper are:

o We propose a model that can classify drivers with high
accuracy. The model combines Gated Recurrent Unit
(GRU) and ResNet with the squeeze and excite blocks
in the multivariate time series domain. GRU reduces
the training time and learns temporal patterns as in
LSTM. The ResNet with the squeeze_excite architecture
is applied to extract more latent features to improve the
model while addressing the vanishing gradient problem.

e We employ our Feature Generation (FG) algorithm to
extract spectral, temporal, and statistical features from
sensing data. FG improves the performance for short
and long driving patterns as well as helps to stabilize
the model. FG unifies the size of the input space for
different window lengths to increase the scalability of
our OnlineDC.

o Our numerous experiments manifest the capabilities of
our proposed approach. The results show that OnlineDC
is promising and outperforms baseline methods for differ-
ent sequence lengths, including addressing the cold start
problem.

II. PROBLEM FORMULATION

As the modern vehicle has numerous sensors, we intend to
learn the driving behavior leveraging data from these sensors.
We formulate the driver classification problem, as follows:

The input: The input is K sensors for D drivers, denoted
by (B,Y) = (BY,v1), ..., (BY,yx), where B is the temporal
driving behaviors of the driver y; where y; € [1, D] is the class
label and NV is the number of driving behaviors. B? is MTS
(Multivariate Time Series) and B® = [S!, ..., SX], where S*
is a sequence with length T representing the k*" signal.

Problem definition: Given B, we select M signals from
Bt sequences, where M < K. Next, we extract F' features
from B® to generate { X!, ..., X'}, where j € [1, F] and |X7|
is equal to the number of the selected signals (M). Our target
function for the driver classification problem is finding the
function f that best identifies the driver y;:

yi = f(XH X2 X (1)

IIT. RELATED WORK
A. Traditional Classification Algorithms

Kwak et al. [8] and Ezzini et al. [15] analyzed the driver
behaviors through a multi-step process using data collected
from vehicle sensors and applying the Extra-Trees, Decision
Tree, Random Forest, XGBoost, and SVM algorithms. Fur-
thermore, Enev et al. [2] used the CAN network dataset that
contained 13 signals (e.g., fuel consumption, throttle position,
acceleration, brake, and steering wheel) for a short period (i.e.,
between 200 milliseconds and 15 seconds). They employed
a lazy algorithm (KNN) and other traditional classification
algorithms (i.e., Random Forest, SVM, Naive Bayes) to dis-
cover the diver class label based on driving behaviors. Ferreira
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Fig. 1. The overview of our data-driven technique (OnlineDC).

et al. [6] used datasets with short driving behavior (time
window was between 4 and 8 seconds) and applied SVM,
Random Forest, and Bayesian Network algorithms. Martinelli
et al. [10] selected two signals (i.e., the torque of friction
and the intake air pressure) for the analysis. They applied
the Nearest Neighbor, SVM, Gaussian Process, Decision Tree,
Random Forest, AdaBoost, Naive Bayes, and Logistic algo-
rithms to discriminate legitimate and illegitimate drivers. They
suggested using the KNN (Lazy algorithm) to find the driver
according to their driving behavior. However, the evaluation
time of KNN for large data takes a long time as there is no
training phase. Rahim ef al. [11] proposed a driver identifi-
cation model using the Random Forest algorithm and based
on GPS data. Using GPS impacts driver privacy which several
drivers may refuse to use the proposed approach. Rettore et
al. [16] used PCA (Principal Component Analysis) to reduce
the input space [17] and applied an auto machine learning
(AutoML) tool called TPOT [18], [19]. The main issue of
PCA is that it does not consider the target, which makes
PCA not fit for many traditional classification algorithms [20].
Whereas, there are other attribute selection algorithms suitable
for the classification problem like Chi-square and Univariate
linear regression. Rettore et al. found that the best-chosen
algorithm by TPOT was the Extra-Tree. Tahmasbi et al. [21]
used smartphone sensors and applied a gradient boosting tree
(GBT) classifier.

B. Deep Learning Approaches for Multivariate Time Series
Classification

Several researchers used Deep Learning for the driving
behavioral classification. Ferreira et al. [6] also used Artificial
Neural Network (i.e., a simple neural network layer called
the Multi-Layer Perceptron (MLP)), which may not produce
a model with high performance. Additionally, Jeong et al. [7]
analyzed driver behavior for a medium to a long time win-

dow (from 75 to 4860 seconds) and only 4 drivers. They
used 2 to 10 sensors of the followings: Acceleration Pedal,
Brake Pedal, Velocity, Throttle Valve Angle Value, Engine
RPM, Longitudinal Acceleration, Lateral Acceleration, Yaw
Rate, Steering Wheel Angle, and Steering Wheel Rotation
Speed. They designed a neural network model containing
three Conv1D layers, where each layer was followed by Max
Pooling. In addition, we implemented SFG to reduce B* and
trained on MGRU-FCN (Multivariate GRU-FCN) in our pre-
vious paper [22]. However, the model did not tackle the cold
start problem, while Chen et al. [1] developed an autoencoder
(DNCAE) without decreasing the size of B'. [23], [24]
applied ResNet-50 (i.e., 1 dense layer and 49 Convolutional
Neural Network layers "CNNs” where every 3 CNN layers
have a shortcut or residual operation to the consecutive CNN
layers) and GRU with 69% and 90% accuracy of Top-1 and
Top-5 [23], and with 71% and 92% accuracy of Top-1 and
Top-5 [24]. Accuracy top-X represents the success percentage
if X drivers or more among other drivers (5-25) have the
highest probability at the journey level. However, the accuracy
of Top-1 and Top-5 for 7 drivers was less than 45%. ResNet-
50 has only CNN layers without any batch normalization,
activation function (e.g., ReLU), or advanced neural network
block like Squeeze-Excite [25] to increase the performance
of the classification model. [23], [24] did not use feature
generation techniques (e.g., statistical or temporal features) to
reduce the input size keeping high performance. The lack of
reducing the input state needs more time to train the neural
network containing a large number of parameters (ResNet-50).

IV. ONLINE DRIVER IDENTIFICATION FRAMEWORK

Fig. 1 represents our general approach from reprocessing
phases until identifying the driver class label using Deep
Learning. There are four steps: signal selection, data prepro-
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Fig. 2. The selected signals using Chi-square and Regression.

cessing and representation, feature generation, and building
the driver identification model.

A. Signal Selection

Sensing data from a vehicle should be encrypted using
several network security approaches, including RSA and
CDMI [26]. We do not use the geolocation data (i.e., GPS)
to protect personal privacy in our approach. We first scale our
dataset using the Min-Max normalization for each signal (s),
to convert the signal points between 0 and 1 that helps the Chi-
square algorithm, which takes only non-negative variables. Let
ZTmin, and Tmax, are the minimum and maximum values in the
signal s for all examples. The normalization formula for only
the signal selection process is as follows:

’ Ts — Tming 2
s Tmax; — Lming @)

We apply two different methods to select the top 10 se-
quences based on signals’ importance (Fig. 2). After that, we
unify the top signals to extract only 14 distinct signals and
pass them for further preprocessing tasks.

There are other methods to reduce the input space, such
as PCA (Principal Component Analysis) [17], [27] and
ANOVA [28]. PCA is computed using only the input data
without the class labels that make PCA more suitable for
unsupervised learning algorithms rather than supervised al-
gorithms [20]. In our experiments, ANOVA did not help our
classification approach to produce a stable model with high
performance for different time series lengths. Thus, we employ
only Chi-square and Univariate linear regression algorithms
to select the signals and reduce the input space in our driver
identification framework.

1) Chi-square (x?): This algorithm is commonly used to
select attributes for the multivariate time series domain [12],
[29]. x? test computes the dependency between a non-negative
attribute and a class label [13]. We select the top 10 highest
x? values to reduce the dimensions of the driving behaviors
B. The formula of x? is:

O — E1)?
xp = Qe B = )
%
N
O = lezk: Yi 3)
N

Algorithm 1: The feature generation algorithm "FG”.

function feature_generation (MTS)

Input : MTS = X € RV*MxT

Output: FG_MTS = X € RN*xFxM.

1. transpose MTS per example (y): MTST = MTS”.

2. generate F' features from MTST for each example:
FG2D = generate_features(MTST, F').

3. replace oo values of features by its p:
FG2D = replace_infinity(FG2D).

4. scale the data per each feature f to generate a
L f — Lmin !

. ’
bitmap: x, = ——
-rmax Z‘n‘lll’lf

5. reshape FG2D intfo MTS:
FG_MTS=reshape(FG2D, N, F, M)
return FG_MTS

2) Univariate linear regression: It is a scoring function to
select important variables. First, we compute the correlation
between the regressor and the class labels for each signal (k €
{1..K}) [30] as follows:

SN @ -7 * (- )
VEY (@ -2+ XN, (5 - 77

where = and y are the mean value of the signal z. Also, y
represents a class label. We convert the correlation to:

corry =

“4)

_ Corr? % (n — 2)
1 — Corr}

where n is the number of examples.

Using the two algorithms, there are several signals which are
selected by both algorithms as shown in Fig. 2. The common
signals are Cost km Trip, Trip Dist km, Fuel Remaining, Air
Drag Force, Intake Air Temp, and KPL Average. Whereas,
the Ambient Air Temp, Fuel Level, CO2 gkm Average,
and Barometer signals are only selected by the Chi-square
algorithm. The Ambient Air Temp is used to distinguish
the Intake Temp values impacted by external air conditions
or other factors (e.g., the engine’s temperature) since our
model computes interdependencies between the channels. In
the dataset, this temperature has the same value in each car.
Additionally, Speed km, Engine RPM, Fuel Flow CCmin, and
Adapter Voltage are only chosen by the regression approach.

Fy (&)

B. Data Preprocessing and Representation

We represent the 2-D dataset into MTS with a fixed length
(e.g., 20 and 1500). We shuffle and randomly split the dataset
into training and testing datasets. We also make sure that each
sequence in MTS is in chronological order. Then, we fill the
gap in data by applying forward and backward interpolation
(PCHIP [31]).

C. Feature Generator (FG)

Algorithm 1 describes how we extract the features from
MTS using our FG. Step 1, we reshape MTS into X €
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RNXMXT Tet § € B* denote a univariate time series (i.e.,
a signal) in the driving behavior B‘, and wavelet is the
Continuous Wavelet Transform (CWT). For every signal (step
2), we generate 82 features briefed in Table I.

1) Spectral Features: We generate 4 different types of
spectral features, where each spectral feature has a width (a)
between 1 and 9. Therefore, we extracted 28 spectral features
in total, where 9 values for each feature except the Wavelet
Entropy feature.

2) Temporal Features: We compute the gradient for each
subsequence using the finite second-order central differences
of the interior values of a signal (S) [36], [37]. For the first
and last elements, we employ the second-order forward and
backward differences, since there is no point before the first
point and after the last point. For ECDF percentile and count,

the mean of the feature. To generate a bitmap, we use Min-
Max normalization per feature (f):

’ T — Tmin
pp=——— (6)

xmaXf - xminf

where Ty, and Tpax, are the minimum and maximum values
in the feature f in all examples. The normalization produces
values between 0 and 1 to enhance the performance of neural
networks by removing bias to large values [38]. Finally, we
reshape the 2-dimensional feature into MTS (3D).

D. Driver Identification

We design a new neural network architecture (MGRU
and ResNet with Squeeze-Excite called "MGRU-ResSE”) to
identify the driver class label shown in Fig. 3.

1) Gated Recurrent Units Network (GRU): GRU addresses
the LSTM’s vanishing gradient problem for a long time
series [39]. The update gate solves the vanishing problem by
learning historical information to flow future data. GRU learns
the long-short pattern as LSTM, while GRU is faster than
LSTM in learning [40], [41]. It is employed to extract high-
level features to improve performance [42]. GRU contains



weight matrices (W and U), where the equations for GRU
are:
zt = o(Woxe + Uyhe—q)
re = o(Wexy + Uphy—q) N
he = tanh(Waxy + U(ry © hy—1))

ht:(lfzt)th—lJth@iLt

where z;, 1y, Bt and h; are the update gate, the rest gate, the
current memory gate, and the final memory gate at time ¢,
respectively. The elementwise (Hadamard) multiplication is
denoted by ©. We utilize the tanh activation function followed
by a dropout which helps in preventing overfitting [43].

2) ResSE: ResSE is Residual Neural Network with
Squeeze-and-Excite block. Residual Neural Network (ResNet)
is a collection of convolution blocks (Conv1D), the activation
functions (ReLU), and the batch normalization layers (BN).
The convolution blocks are efficiently used in discovering the
semantic segmentation of pictures [44]. The formula of the
basic convolution block is:

y=W®z+b )

® denotes the convolution operator. We employ eleven 1-D
convolution layers (ConvlD) in our neural network. ReLU
(Rectified Linear Units) is a low computation cost. The Batch
Normalization layer (BN) helps to reduce the learning time
and to support the generalization. The formulas for ReL.U and
BN are:

re = ReLU(y) 9

bn = BN(z) (10)
where z is the output of ConvlD (y) or the ReLU layer (re).
The residual operation (h™) is a shortcut connection to add
the outputs of two batch normalization layers (hBNt and hBN2),
where ”+” is the residual operator. This shortcut improves the
performance of our driver classification model by addressing
the vanishing gradient problem [45].
hI‘CS — hBN] + hBN2 (11)
We employ squeeze-and-excite block (SE), to discover
interdependencies between the channels [46]. SE is built for
any transformation Fj, : X — U, X € R XWXC and
UeREXWXC v — [y, ... vc] is a set of kernels. Fj,. is
represented by U = [uq,...,uc] is the output of F},. where
U = V. @ X = Zle Ve ® X° and V7 is a 2D kernel.
z € RY is used to decrlease the dimensions of U by H x W:
2o = Foqlue) = 72311 Z]mil u.(i,7). The excite

(H xW)

operation is employed to aggregate Z by ReLU followed
by the sigmoid (o) activation function: s = F,, (2, W) =
o(g(z,W)) = o(WaReLU(W;z)), where Wy and Wy are

the dimension layers. The output (X = [Z1, ..., Z¢]) of SE is
scaled the U with the activation: Z, = Fscqie(Ue, S¢) = Ue-Se.

3) Combining GRU and ResSE: The concatenation of GRU
and ResSE neural networks is shown in Fig. 3. This combi-
nation enhances the model performance. This combination is
defined by:

h¢ = h9 @ h?

. (12)
y = softmax(h®)

where @ is the concatenation operator, and h® is the output
of concatenating the global pooling (h9) and the dropout (h?).
The driver class label is predicted by the softmax activation.
The concatenation provides the softmax activation function
with the latent features generated from the ResNet with
squeeze_and_excite blocks (NN1), and the long short patterns
from GRU (NN2). Using both neural networks (NNI1 and
NN2) produces better performance than using a single one
(NNT1 or NN2).

4) The Loss Function: We employ the categorical cross-
entropy loss function (called the softmax loss) to train our
classification model since this loss function is commonly used
in neural network after the softmax activation function [25],
[47], [48]. The formula of the loss function is as follows:

D

Loss = — Zyd -log 94
d=1

13)

where 34 represents the probability of the actual d*" class label
(i.e., the actual binary vector of a training driving behavior), g4
denotes the probability of the predicted d*" class label (i.e., the
predicted softmax probability distribution over D drivers for
the training driving behavior) generated by the classification
model, and D is the number of drivers in the model (i.e., the
number of class labels). To train the neural network, any class
label of an example is converted to a vector of zeros and a
one (i.e., the one-hot vector). The loss function sums only the
loss values for the actual class label (mutually exclusive) in
the vector since other values are zeros.

We check the maximum probability of class labels against a
threshold (e.g., 0.90) to verify the results since classifiers select
one class label even when they are not sure. Therefore, if the
maximum probability is larger than or equal to a threshold (>
0.90), we show the related class label; otherwise, we present
the unsure report containing the top drivers.

V. COMPETING APPROACHES

Random Forest, XGBoost, SVM, and MLSTM-FCN are the
baselines methods for comparison. For the first three baseline
methods, we use FG2D (i.e., 2D) after step 4 in Algorithm 1
instead of FG_MTS (i.e., 3D), to be suitable for these methods.
The state-of-the-art techniques are:

Random Forest: Random Forest generates numerous deci-
sion trees randomly during training the classification model.
After that, it employs bagging approaches to create an op-
timized model. The random decision forests algorithm is
commonly used for classifying drivers based on their behaviors
(8], [15], [49].

XGBoost: In 2016, Chen developed the eXtreme Gradient
Boosting (XGBoost) algorithm [50]. XGBoost is a scalable



TABLE II
OVERALL PERFORMANCE SUMMARY OF OUR APPROACH AGAINST THE
BASELINE ALGORITHMS (T = 10).

Algorithm Acc. Prec. Rec. Fl-score = Kappa
Random Forest 0.78 0.75 0.78 0.74 0.73
XGBoost 0.75 0.71 0.75 0.73 0.70
SVM 0.41 0.23 0.41 0.29 0.19
MLSTM-FCN 0.84 0.84 0.84 0.82 0.80
OnlineDC 091 091 0.91 0.90 0.89

tree boosting approach by applying the gradient boosting
machine [51] and running in parallel which decreases the
training time. It was employed in numerous cybersecurity
domains [52]-[54].

SVM: The algorithm of SVM converts the input space
into a higher-dimensional space based on the kernel function,
to discover support vectors that maximize margins between
classes [55], [56]. SVM has been used in several research
papers for the driver classification problem [2], [8].

MLSTM-FCN: Karim et al. designed the Multivariate
LSTM-FCN (MLSTM-FCN) for classifying multivariate time
series [25], [57].

VI. EXPERIMENTS AND RESULTS

Instead of reporting the best value obtained, we ran each
algorithm 10 times and took the average of each metric in
our experiments, unless we mention otherwise. Additionally,
we trained all classifiers using the generated features by FG
except for some experiments in Section VI-D where we ran
our approach without the Feature Generation algorithm for
comparison. Furthermore, we trained the neural networks for
30 epochs in all experiments.

A. Datasets Description

The dataset [S8] has eight men and six women driving
Renault and Hyundai cars. The ages of Renault’s drivers are
between 25 and 61, while the ages of other vehicle’s drivers are
between 20 and 53. The experiments of Renault and Hyundai
had 40 trips (28 hours per trip) and eight trips (3 hours per
trip), respectively. The dataset contains 38 sensors from mobile
phones and vehicles (OBD-II). Furthermore, most previous
research works in the related work (Section III) used datasets
with similar sizes or less such as Kwak et al. [8] and Jeong et
al. [7]. In our previous research [22], we suggested decreasing
the action space per group of drivers (e.g., 10) to train the
model simpler.

B. Overall Performance Summary

Table II shows the performance of our approach (OnlineDC)
against the baseline methods. We trained all algorithms using
the first 10 seconds (17" = 10). For the traditional classification
baseline methods, Random Forest was the best performance
(78% accuracy), while SVM was the worst performance (41%
accuracy). Furthermore, MLSTM-FCN performed in second
place among all algorithms with 84% accuracy. We can see
that our approach (OnlineDC) outperforms for all baseline

Loss of OnlineDC Loss of MLSTM-FCN
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Fig. 4. The Loss of our neural network and MLSTM-FCN during training
the models.
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Fig. 5. The Accuracy of our neural network and MLSTM-FCN during training
the models.

methods with at least 7% for accuracy, precision, and recall.
Our approach addresses the cold-start problem with at least
8% and 9% for Fl-score and Kappa, respectively.

Fig. 4 and Fig. 5 represent the learning metrics at each
iteration. We have trained each neural network once to show
the learning and accuracy curves of our neural network com-
parable with the other neural network (MLSTM-FCN). Fig. 4
shows the loss values during training the neural networks of
our approach and MLSTM-FCN. The loss is computed on the
training and validation datasets. We can see that our proposed
approach did better than MLSTM-FCN since the loss values
were reduced before the 10*" iteration. Whereas, MLSTM-
FCN learned slower in learning during its training to reach
the optimization, as the validation’s loss values start close to
0.5 at the end of 30 epochs. Furthermore, we want to show
how the accuracy of our neural network model was better than
the MLSTM-FCN neural network during the training of the
two models as shown in Fig. 5. As the loss was reduced faster
during training our model, the accuracy of our proposed neural
network outperformed MLSTM-FCN.

C. The Variance of Accuracy

Fig. 6 shows the accuracy of our approach against other
algorithms. We can see that OnlineDC kept the high perfor-
mance in training the algorithm 10 times for the first 200
time steps (7" = 200). Our approach has 97% accuracy except
for one result (95%). Because of this, the median was 97%
the same as the maximum performance. MLSTM-FCN had
a high variance because it might need more training than 30
iterations as it was slower than our approach using GRU in
training (Fig. 4 and Fig. 5). The results of MLSTM-FCN were
between 87% and 95%. This is because GRU (used in our ap-
proach) learns faster than LSTM [40] and ResNet in OnlineDC
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Fig. 6. Comparing the accuracy of OnlineDC with other algorithms for T=200.
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Fig. 7. Comparing the performance of OnlineDC using FG and without using
FG. Bars (Fl-score) and lines (Training Time).

improves performance. We can see that the variance of the
results was high for the MLSTM-FCN and the Random Forest
algorithm. Whereas, our approach, the XGBoost algorithm,
and the SVM algorithm had accuracy with less variance. SVM
suffered from chronic low performance with only 48% for all
ten experiments.

D. The Effect of the FG Features

In this Section, we need to show that our Feature Generation
(FG) algorithm improves the performance of our Deep Learn-
ing (MGRU-ResSE). Fig. 7 illustrates that FG is essential to
foster the performance (F1-score) of our proposed approach.
We can see that the generated features helped our neural
network (MGRU-ResSE) to produce a classification model
with high performance (i.e., F-score between 91% and 97%)
for different time steps. However, training our neural network
without FG built an identification model with low performance
( F1-score between 62% and 80%). Additionally, the training
time without FG was a little better for the first 10, 20, and 30
time steps though low performance. For the first 60, 120, 150,
and 200 time steps, the training time of MGRU-ResSE with
FG was so close to MGRU-ResSE without FG. After that, our
neural network with FG was running faster than without FG.
In general, the training time with FG was more stable and
more scalable computation between 43 and 46 seconds for
different time steps while the training time of our proposed
neural network without FG was between 37 and 103 seconds.

E. The Importance of Using All Features

Here, we want to show how all features improve stabilizing
our model. Therefore, all features (82) gave the highest
accuracy for different lengths of the time series. They help

TABLE III
THE GROUPS OF THE GENERATED FEATURES

Group Features Total
Values
Statistical Kurtosis, Skewness, Minimum, Maximum, | 21
without Median, Standard Deviation, Variance, Mean
ECDF Absolute Deviation, Root Mean Square, In-
terquartile Range, Histogram (10)
Statistical Statistical without ECDF, ECDF (10), | 35

ECDF Percentile (2), ECDF Percentile Count
@)

Statistical and
Temporal G1

Statistical, Absolute Energy, Centroid, Nor- | 41
malized Entropy, Mean Absolute Differences,
Mean Differences, Median Absolute Differ-
ences

Statistical and
Temporal G2

Statistical and Temporal G1, Median Dif- | 48
ferences, Negative Turning Points, Positive
Turning Points, Neighbourhood Peaks, Peak
to Peak, Signal Distance, Slope

Statistical and
Temporal G3

Statistical and Temporal G2, Sum of Abso- | 51
lute Differences, Total Energy, Zero Crossing
Rate

Statistical and
Temporal

Statistical and Temporal G3, Sum Cubic | 54
Spline Coefficients, Sum Gradient (Squared),
Sum Differences (Squared)

All features Statistical and Temporal, Wavelet Absolute | 82
Mean (9), Wavelet Energy (9), Wavelet En-

tropy, Wavelet Standard Deviation (9)

Accuracy of OnlineDC using Different Feature Types
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Fig. 8. Performance of OnlineDC using our neural network (GRU and ResNet
with the squeeze and excite blocks) with different types of features.

the model to full fill with the driver identification require-
ments. All features consist of spectral, temporal, and statistical
features. Fig. 8 shows the performance of our deep neural
network using different feature types, while Table III shows
the features in each type. In building our FG feature set, we
added features incrementally to improve the performance. In
some cases, we had to prune features with non-value-added
such as the Autocorrelation feature that gave the same values
as the Absolute Energy feature as there were no complex
numbers in the signals, and Area Under the Curve feature
did not improve the performance. Also, we pruned some
features that decreased the performance, e.g., ECDF Slope,
Wavelet (kurtosis, Skewness, Minimum, Maximum) since they
increased the state space between 9 to 10 values per feature.
We made sure that the output of FG would be a matrix to be
fit for our neural network since GRU and Conv1D layers take
inputs of 3D where the first dimension was equal to the batch
size for training the model. Finally, we can see that using all
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Fig. 10. Comparing accuracy without threshold and accuracy of the verifica-
tion with threshold using OnlineDC varying 1" where the threshold is at least
90% (class probability > 0.90).

features (82) gave the highest performance and produced the
most stable model.

FE. The Length of The Multivariate Time Series Effect

The purpose of this part was to show how our model was
stable during the experiments varying the length of the original
time series using our proposed feature generation algorithm
and neural network. OnlineDC had a high performance (F-
score 91%-97%) even though we increased the length of MTS
from 10 (10 seconds) to 1500 (25 minutes) time steps. We can
see that we had a larger action space (14 drivers) than [8] (2
to 5 drivers), while the performance of our approach did not
decline. Hence, the results show that OnlineDC outperformed
all baseline methods (Fig. 9). Finally, the classification mod-
els, generated by our approach and the baseline approaches,
evaluated each driver’s behavior to identify the driver in less
than one second.

G. Verification Accuracy

Here, we show the automatic verification of our classifi-
cation model (OnlineDC) based on the probability vector of
the class labels. Previous research [4] used data similarity after
classification that took a long time since it required to compare
a driving behavior of a driver (test example) with all their
driving behaviors. Whereas, our deep neural network provides
the probability of each class label that can be used for driver
verification. Fig. 10 shows the verification using 90% threshold
for OnlineDC. Therefore, if the maximum probability of a
class label is at least 0.90, we provide the class label (Driver
ID) to the end-user in our proposed framework 3. If not, we

show the unsure report with a list of three top drivers and their
probability. We can see that our proposed approach provides
at least 95% of accuracy. Also, the verification gives 100%
accuracy for T' = 20.

VII. CONCLUSION

In this paper, we used a real driving dataset with several
paths. We applied both the Chi-square and the Univariate
linear regression algorithms to select the most valuable signals
(reducing state space). We extracted 82 features using our
Feature Generation (FG) algorithm to improve performance
and stabilize our driver classification model. Additionally, we
designed a new MGRU-ResSE neural network architecture by
utilizing GRU and ResNet with the squeeze_excite block. The
conducted experiments show that our approach (OnlineDC)
outperforms the baseline methods. In the future, we plan to
apply our algorithm in larger real-world driving datasets and
other problem domains. Additionally, we are planning to take
into account the human factors in the classification model.

REFERENCES

[1] J. Chen, Z. Wu, and J. Zhang, “Driver identification based on hidden
feature extraction by using adaptive nonnegativity-constrained autoen-
coder,” Applied Soft Computing, vol. 74, pp. 1-9, 2019.

[2] M. Enev, A. Takakuwa, K. Koscher, and T. Kohno, “Automobile driver
fingerprinting,” Proceedings on Privacy Enhancing Technologies, vol.
2016, no. 1, pp. 34-50, 2016.

[3] K. Kadiri and O. A. Adegoke, “Design of a GPS/GSM based anti-theft
car tracker system.” Current Journal of Applied Science and Technology,
pp- 1-8, 2019.

[4] B. I. Kwak, J. Woo, and H. K. Kim, “Know your master: Driver
profiling-based anti-theft method.” in PST. IEEE, 2016, pp. 211-218.

[5] N. Virojboonkiate, P. Vateekul, and K. Rojviboonchai, “Driver identifica-
tion using histogram and neural network from acceleration data.” in 2017
IEEE 17th International Conference on Communication Technology
(ICCT), 2017, pp. 1560-1564.

[6] J. Ferreira, E. Carvalho, B. V. Ferreira, C. de Souza, Y. Suhara,
A. Pentland, and G. Pessin, “Driver behavior profiling: An investigation
with different smartphone sensors and machine learning,” PLoS one,
vol. 12, no. 4, p. 0174959, 2017.

[7]1 D. Jeong, M. Kim, K. Kim, T. Kim, J. Jin, C. Lee, and S. Lim, “Real-
time driver identification using vehicular big data and deep learning,”
in 2018 2I1st International Conference on Intelligent Transportation
Systems (ITSC). 1EEE, 2018, pp. 123-130.

[8] B. Kwak, M. L. Han, and H. K. Kim, “Driver identification based
on wavelet transform using driving patterns,” IEEE Transactions on
Industrial Informatics, 2020.

[9] F. Martinelli, F. Mercaldo, V. Nardone, A. Orlando, and A. Santone,

“Who’s driving my car? a machine learning based approach to driver

identification.” in ICISSP, 2018, pp. 367-372.

F. Martinelli, F. Mercaldo, and A. Santone, “Machine learning for driver

detection through can bus,” in 2020 IEEE 91st Vehicular Technology

Conference (VIC2020-Spring). 1EEE, 2020, pp. 1-5.

M. A. Rahim, L. Zhu, X. Li, J. Liu, Z. Zhang, Z. Qin, S. Khan,

and K. Gai, “Zero-to-stable driver identification: A non-intrusive and

scalable driver identification scheme,” IEEE transactions on vehicular

technology, vol. 69, no. 1, pp. 163-171, 2019.

P. Schiifer and U. Leser, “Fast and accurate time series classification with

weasel,” in Proceedings of the 2017 ACM on Conference on Information

and Knowledge Management, 2017, pp. 637-646.

[13] J.-H. Seong and D.-H. Seo, “Wi-fi fingerprint using radio map model

based on mdlp and euclidean distance based on the chi squared test,”

Wireless Networks, vol. 25, no. 6, pp. 3019-3027, 2019.

M. Skowron, F. Lemmerich, B. Ferwerda, and M. Schedl, “Predicting

genre preferences from cultural and socio-economic factors for music

retrieval,” in European Conference on Information Retrieval. Springer,

2017, pp. 561-567.

[10]

(11]

[12]

[14]



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

S. Ezzini, I. Berrada, and M. Ghogho, “Who is behind the wheel? driver
identification and fingerprinting.” Journal of Big Data, vol. 4, no. 1,
2019.

P. H. Rettore, A. B. Campolina, A. Souza, G. Maia, L. A. Villas,
and A. A. Loureiro, “Driver authentication in vanets based on intra-
vehicular sensor data,” in 2018 IEEE Symposium on Computers and
Communications (ISCC). 1EEE, 2018, pp. 00078-00 083.

1. T. Jolliffe, “Springer series in statistics,” Principal component analysis,
vol. 29, 2002.

R. S. Olson, R. J. Urbanowicz, P. C. Andrews, N. A. Lavender, L. C.
Kidd, and J. H. Moore, “Automating biomedical data science through
tree-based pipeline optimization.” in Applications of Evolutionary Com-
putation. Springer International Publishing, 2016, pp. 123-137.

R. S. Olson, R. J. Urbanowicz, and J. H. Moore, “Evaluation of a
tree-based pipeline optimization tool for automating data science.” in
Evaluation of a tree-based pipeline optimization tool for automating
data science., ACM. Proceedings of the Genetic and Evolutionary
Computation Conference, 2016, pp. 485-492.

D. Kumar, R. Singh, A. Kumar, and N. Sharma, “An adaptive method of
pca for minimization of classification error using naive bayes classifier,”
Procedia Computer Science, vol. 70, pp. 9-15, 2015.

F. Tahmasbi, Y. Wang, Y. Chen, and M. Gruteser, “Poster: Your phone
tells us the truth: Driver identification using smartphone on one turn.”
in Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking. ACM, 2018, pp. 762-764.

H. Abu-gellban, L. Nguyen, M. Moghadasi, Z. Pan, and F. Jin, “Livedi:
An anti-theft model based on driving behavior,” in Proceedings of the
2020 ACM Workshop on Information Hiding and Multimedia Security,
2020, pp. 67-72.

S. H. Sanchez, R. F. Pozo, and L. A. H. Gémez, “Deep neural networks
for driver identification using accelerometer signals from smartphones,”
in International Conference on Business Information Systems. Springer,
2019, pp. 206-220.

S. H. Sanchez, R. F. Pozo, and L. A. H. Gomez, “Driver identification
and verification from smartphone accelerometers using deep neural
networks,” IEEE Transactions on Intelligent Transportation Systems,
2020.

F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate LSTM-
FCNs for time series classification.” in Neural Networks 116. Elsevier,
2019.

H. Abu-gellban and L. Nguyen, “Cdmi: A clockwise-displacement
algorithm to compute multiplicative inverse,” in 2020 International
Conference on Computational Science and Computational Intelligence
(CSCI). IEEE, 2020, pp. 1407-1410.

S. Abujilban, L. Mrayan, S. Hamaideh, D. Alrousan, and H. Abu-
gellban, “Attitudes toward corona vaccine and intention among univer-
sity students,” to appear in 2021 International Conference on Computa-
tional Science and Computational Intelligence (CSCI). IEEE, 2021.
L. St, S. Wold et al., “Analysis of variance (anova),” Chemometrics and
intelligent laboratory systems, vol. 6, no. 4, pp. 259-272, 1989.

A. Amiri-Simkooei, M. Hosseini-Asl, J. Asgari, and F. Zangeneh-Nejad,
“Offset detection in gps position time series using multivariate analysis,”
GPS Solutions, vol. 23, no. 1, p. 13, 2019.

Z. Pan, H. L. Nguyen, H. Abu-gellban, and Y. Zhang, “Google trends
analysis of covid-19 pandemic,” in 2020 IEEE International Conference
on Big Data (Big Data). 1EEE, 2020, pp. 3438-3446.

F. N. Fritsch and R. E. Carlson, “Monotone piecewise cubic interpola-
tion,” SIAM Journal on Numerical Analysis, vol. 17, no. 2, 1980.

C. Kocaman and M. Ozdemir, “Comparison of statistical methods and
wavelet energy coefficients for determining two common pq distur-
bances: Sag and swell,” in 2009 International Conference on Electrical
and Electronics Engineering-ELECO 2009. 1EEE, 2009, pp. 1-80.

B. Yan, A. Miyamoto, and E. Briihwiler, “Wavelet transform-based
modal parameter identification considering uncertainty,” Journal of
Sound and Vibration, vol. 291, no. 1-2, pp. 285-301, 2006.

M. Barandas, D. Folgado, L. Fernandes, S. Santos, M. Abreu, P. Bota,
H. Liu, T. Schultz, and H. Gamboa, “Tsfel: Time series feature extraction
library,” SoftwareX, vol. 11, p. 100456, 2020.

S. Raschka, “Mixtend: providing machine learning and data science
utilities and extensions to python’s scientific computing stack,” Journal
of open source software, vol. 3, no. 24, p. 638, 2018.

H. Abu-gellban, L. Nguyen, and F. Jin, “Gfdlecg: Pac classification for
ecg signals using gradient features and deep learning,” in Advances in

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]
[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

[58]

Data Science and Information Engineering.
382.

B. Fornberg, “Generation of finite difference formulas on arbitrarily
spaced grids.” Mathematics of computation, vol. 41, no. 184, 1988.

H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning.” in /5th HotNets. ACM, 2016,
pp. 50-56.

K. Cho, B. V. Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation.” in arXiv
preprint arXiv, 2014.

S. Yang, X. Yu, and Y. Zhou, “LSTM and GRU Neural Network
Performance Comparison Study: Taking Yelp Review Dataset as an Ex-
ample,” in 2020 International Workshop on Electronic Communication
and Artificial Intelligence (IWECAI). 1EEE, 2020, pp. 98-101.

L. H. Nguyen, Z. Pan, O. Openiyi, H. Abu-gellban, M. Moghadasi, and
F. Jin, “Self-boosted time-series forecasting with multi-task and multi-
view learning.” in arXiv preprint arXiv:1909.08181, 2019.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling.” in arXiv
preprint arXiv:1412.3555, 2014.

M. N. Moghadasi, Y. Zhuang, and H. Gellban, “Robo: A counselor
chatbot for opioid addicted patients,” in 2020 2nd Symposium on Signal
Processing Systems, 2020, pp. 91-95.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation.” in CVPR. IEEE, 2015, pp. 3431-3440.
R. L. Kumar, J. Kakarla, B. V. Isunuri, and M. Singh, “Multi-class brain
tumor classification using residual network and global average pooling,”
Multimedia Tools and Applications, vol. 80, no. 9, pp. 13429-13438,
2021.

J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks.” in
CVPR, 2015, pp. 7132-7141.

V. Kougia, J. Pavlopoulos, and I. Androutsopoulos, “Aueb nlp group at
imageclefmed caption 2019.” in CLEF (Working Notes), 2019.

F. Karim, S. Majumdar, H. Darabi, and C. Chen, “LSTM fully convolu-
tional networks for time series classification.” in IEEE Access 6. 1EEE,
2017.

D. Hallac, A. Sharang, R. Stahlmann, A. Lamprecht, M. Huber, M. Roe-
hder, and J. Leskovec, “Driver identification using automobile sensor
data from a single turn.” in In 2016 IEEE 19th International Conference
on Intelligent Transportation Systems (ITSC). 1EEE, 2016, pp. 953-958.
T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system.”
in 22nd ACM SIGKDD. ACM, 2016, pp. 785-794.

J. Zhou, E. Li, M. Wang, X. Chen, X. Shi, and L. Jiang, “Feasibility
of stochastic gradient boosting approach for evaluating seismic lique-
faction potential based on SPT and CPT case histories.” in Journal of
Performance of Constructed Facilities 33, no. 3, 2019.

Z. Chen, F. Jiang, Y. Cheng, X. Gu, W. Liu, and J. Peng, “XGBoost
classifier for DDoS attack detection and analysis in SDN-based cloud.”
in BigComp. IEEE, 2018, pp. 251-256.

M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula,
“Autoencoder-based feature learning for cyber security applications.”
in In 2017 International joint conference on neural networks (IJCNN).
IEEE, 2017, pp. 3854-3861.

Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline.” in 2017 international
Jjoint conference on neural networks (IJCNN). 1EEE, 2017, pp. 1578—
1585.

L. H. Nguyen, S. Jiang, H. Abu-Gellban, H. Du, and F. Jin, “Nipred:
Need predictor for hurricane disaster relief,” in Proceedings of the 16th
International Symposium on Spatial and Temporal Databases, 2019, pp.
190-193.

H. Abu-gellban, “A survey of real-time social-based traffic detection,”
in 2020 IEEE International Conference on Intelligence and Security
Informatics (ISI). 1EEE, 2020, pp. 1-6.

H. Du, L. Nguyen, Z. Yang, H. Abu-Gellban, X. Zhou, W. Xing, G. Cao,
and F. Jin, “Twitter vs news: Concern analysis of the 2018 california
wildfire event,” in 2019 IEEE 43rd Annual Computer Software and
Applications Conference (COMPSAC), vol. 2. IEEE, 2019, pp. 207-
212.

P. H. L. Rettore, A. B. Campolina, L. A. Villas, and A. A. F. Loureiro,
“A method of eco-driving based on intra-vehicular sensor data,” in 2017
IEEE Symposium on Computers and Communications (ISCC), 2017, pp.
1122-1127.

Springer, 2021, pp. 369—



