
LiveDI: An Anti-theft Model Based on Driving Behavior
Hashim Abu-gellban, Long Nguyen, Mahdi Moghadasi, Zhenhe Pan, Fang Jin

Department of Computer Science, Texas Tech University
{hashim.gellban, long.nguyen, mahdi.moghadasi, zhenpan, fang.jin}@ttu.edu

ABSTRACT
Anti-theft problem has been challenging since it mainly depends
on the existence of external devices to defend from thefts. Recently,
driver behavior analysis using supervised learning has been in-
vestigated with the goal to detect burglary by identifying drivers.
In this paper, we propose a data-driven technique, LiveDI, which
uses driving behavior removing the use of external devices in order
to identify drivers. The built model utilizes Gated Recurrent Unit
(GRU) and Fully Convolutional Networks (FCN) to learn long-short
term patterns of the driving behaviors from drivers. Additionally,
we improve the training time by utilizing the Segmented Feature
Generation (SFG) algorithm to reduce the state space where the driv-
ing behaviors are split with a time window for analysis. Extensive
experiments are conductedwhich show the impact of parameters on
our technique and verify that our proposed approach outperforms
the state-of-the-art baseline methods.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Security
and privacy→ Authentication.
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1 INTRODUCTION
Nowadays, manufacturers are using a single board as an intelligent
controller in the car to be responsible for many functions. For
example in the recent model of BMW, what is called as an iDrive
interface, can help drivers to use voice commands for navigation.
While more cars are equipped with computer modules on-board,
which provide an interface between the driver and the mechanical
modules of the vehicle, it also exposes an opportunity to reverse
engineer the technology to possibly steal the vehicle. According to
a report published in 2017, there are 773,139 thefts of motor vehicles
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in the U.S.1. An increasing number of vehicle thefts through on-
board computer hacking has been reported. A recent report showed
that by exploiting the vulnerabilities of the car onboard system,
thieves had begun to steal cars remotely2.

To address this issue, car manufacturers include a security mod-
ule to vehicles. This security module is often integrated with Global
Positioning System (GPS) and Global System for Mobile Commu-
nication (GSM). This tracking embedded component is installed
usually in a secret part of the vehicle to transmit the position of
the vehicle in the term of coordinates to the GSM system [1–4].
Although using the tracking module in the vehicle makes it easier
to find the stolen car, it may not necessarily prevent a burglary
scenario in advance. In addition, many car drivers may consider the
GPS tracking process to be an invasion of privacy. Another tech-
nology is based on biometric approaches. They have shown initial
promising results to authorize the car driver [5]. However, due to
economic reasons for the car manufacturers and also the accuracy
of such models, these techniques are a burden in the industry to be
implemented [6].

Virojboonkiate et al. [7] used a dataset for 13 shuttle bus drivers
containing 100 sensors. They converted thewhole data (9000million
examples) into 4000 histograms and trained them using neural
network (NN). This technique required a largematrix size to present
the state space (i.e., a histogram with 100 bars) resulting in accuracy
(below 76%).

Another approach to detecting car burglary is applying tree-
based classification algorithms and supervised neural network, to
analyze the driver behavioral habits. Kwak et al. and Martinelli et
al. [8, 9] employed Random Forest and J48 for 10 driver dataset
(94,401 rows) using the KIA model with 15 and 51 sensors, respec-
tively. However, these approaches classified each row individually
without applying data reduction techniques, which required long
training time and had slow testing time. [8] also added only 𝜇 and
𝜎 of a short window size (i.e., 60) for 15 sensors to the input data
with high-dimensional spaces (i.e., 45 features in total for each row).
Kwak et al. applied the Random Forest algorithm for classification,
and calculated the similarity between a new behavior profile and
the driving profile of the selected driver by the classification model.
The similarity is used for driver verification to determine legiti-
mate/ illegitimate drivers of a car. Also, this verification approach
helps police discovering the identity of the illegitimate driver, and
deterring burglars. However, the Random Forest, LSTM-FCN, and
other eager learning methods [10–14] need a long time to build a
model using raw data without decreasing the state size. The number
of licensed drivers in the U.S. was approximately 227 million in

1https://ucr.fbi.gov/crime-in-the-u.s/2017/crime-in-the-u.s.-2017/topic-pages/motor-
vehicle-theft
2https://www.bbc.com/news/technology-29786320 (2014), [Last Access 4/8/2020]
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20183. To analyze a large number of drivers, we may breakdown the
problem into smaller problems by building a classification model
per group of drivers. The new sample of an illegitimate driver is
evaluated using all models to select a driver per group. After that,
we compare the profiles of these drivers with the new profile to
find the identity of the illegitimate driver (the highest similarity).
For instance, if we use this methodology in the U.S. with 10 drivers
per group and every model takes 6 minutes (e.g., MLSTM-FCN in
Table 1), we need roughly 22 million models and approximately 259
years for a single machine to build the models. To address a long
training time issue, we need an approach to build the models in
a shorter time. Our approach builds a model in 17 seconds and it
takes around 12 years (decrease 95%) to build all models. If we use
the parallel programming on HPC, it may reduce the building time
from years to weeks, which makes our approach more practical for
the anti-theft problem and for maintaining the models when the
drivers change their driving behaviors.

To tackle these problems of state size and training/ testing time to
make the approach suitable for national wide implementation (e.g.
the U.S.), we proposed LiveDI (Live Driver Identification), a deep
learning based model which predicts driver from driving behaviors
requiring short learning time but keeping high performance. The
model utilizes the SFG algorithm for feature generation by reducing
the input space to speed up the learning and evaluation process.
Moreover, it combines the Gated Recurrent Unit (GRU) and FCN
architecture to learn short and long term temporal patterns. The
GRU architecture helps decreasing training time while maintains
temporal learning capability as in the Long Short-Term Memory
(LSTM) architecture. The FCN architecture learns higher latent
features and enhances the predictive performance. Additionally,
a Batch Normalization (BN) unit is also added to the network to
enhance its stability. Extensive experiments are done to validate
the model. More specifically, our main contributions in this paper
are:

• To the best of our knowledge, we are one of the first in com-
bining Gated Recurrent Unit (GRU) and Fully Convolutional
Networks (FCN) in multivariate time series setting, to take
advantages of the fast training in GRU while maintaining the
capability to learn temporal patterns as in Long Short-Term
Memor (LSTM). The FCN component is used as an additional
latent feature extractor for the classification model. We also
added the Batch Normalization (BN) unit to the model, to
enhance overall model performance.

• We employed the Segmented Feature Generation (SFG) algo-
rithm for a given multivariate time series in our proposed
framework to extract important features while reducing the
data size. Combining segments of 11 effective statistical fea-
tures per sensor enhances the performance and declines the
running time for training the model.

• Extensive experiments are conducted to show the advan-
tages of our proposed model. The results show that driving
behavior based driver identification with LiveDI is promis-
ing and outperforms competing approaches for medium and
long multivariate time series.

3https://www.statista.com/statistics/198029/total-number-of-us-licensed-drivers-by-
state/

2 PROBLEM FORMULATION
Here, we present our multivariate time series driver classification
problem as follows:

The input: The input of the model is the measures of𝑀 sensors
representing different driving behaviors performed by 𝐷 drivers.
We can denote this as pairs of driving behaviors and the performed
driver number: (𝐵,𝑌 ) = (𝐵1, 𝑦1) , (𝐵2, 𝑦2), ..., (𝐵𝐷 , 𝑦𝐷 ), where 𝐵𝑖 is
the driving behaviors of the driver 𝑦𝑖 ; 𝑦𝑖 ∈ [1, 𝐷] representing the
class label. 𝐵𝑖 will be a multivariate time series with𝑀 dimension,
𝐵𝑖 = [𝑆1, 𝑆2, ..., 𝑆𝑀 ] representing all driving behaviors recorded by
sensors.

Problem definition: Given the input 𝐵𝑖 which is driving be-
haviors compose of𝑀 featured sensors [𝑆1, 𝑆2, ..., 𝑆𝑀 ], we have to
find a function 𝑓 that predicts which driver the behaviors belong
to. Let {𝑋1, 𝑋2, ..., 𝑋𝐹 } be the set of 𝐹 features extracted from 𝐵, the
goal of this problem is to find the driver 𝑦 ∈ [1, 𝐷] fitted with the
behaviors most: 𝑦 = 𝑓 (𝑋1, 𝑋2, ..., 𝑋𝐹 )

3 RELATEDWORK
We briefly review some prior approaches in the anti-theft solutions
for vehicles.

Traditional ClassificationAlgorithmsusingDecision Tree-
Based and Lazy Learning Methods. Kwak et al. [8] analyzed the
driver behaviors through a multi-step process using data collected
from vehicle sensors and applying the Random Forest algorithm.
In another classification based work Ezzini et al. collected driving
patterns such as the brake pedal and GPS information in a duration
of 1 and 5 minutes, and/ or 3 sensors physically attached to partici-
pants (e.g., temperature and ECG). Their approaches mainly utilize
traditional classification algorithms like KNN (i.e., lazy learning, no
training, too slow), Random Forest, Extra-Trees, Decision Tree, and
Gradient Boosting [10]. [11] used smartphones as an alternative
to vehicle sensors to collect data. Features such as Accelerometer,
Gyroscope, Magnetometer, and GPS collected through phone and
ran over a gradient boosting tree (GBT) classifier. Alternatively,
a Gaussian mixture model (GMM) was used to identify the dri-
ver in [15]. The model was evaluated using a real driving dataset
without producing good results.

Deep Learning for Time Series Classification. Deep learning
based methods recently received attention by researchers for the
driving behavioral classification. The first application of deep learn-
ing over GPS data started with work of Dong et al. by using Convo-
lutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) to extract features from GPS data and used them in a clas-
sification, which increased the input size 7 times. El Mekki et al.
proposed to use LSTM based method for the driving classification
problem [13]. His work has shown that a LSTM based methods
- FCN-LSTM - gave the best results among other methods that
were evaluated (StackedRNN, NoPoolCNN, CNN). In other research,
Chen et al. [14] developed an autoencoder NN called DNCAE to
identify drivers without reducing the input size (𝐵𝑖 ) of NN.

These methods yielded valid results as noted by each study, how-
ever, shorter training time with high accuracy is still challenging
to address. We proposed to employ recent advances in machine
learning techniques to overcome such challenges.
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Figure 1: Data processing pipeline in LiveDI.

4 REAL-TIME DRIVER IDENTIFICATION
FRAMEWORK

We present our proposed LiveDI in this Section. The framework
includes three steps: preprocessing, feature generation and real-time
driver classification.

4.1 Preprocessing
A time series is a sequence of values indexed which are ordered
according to the time. We split the dataset into training and testing
datasets with shuffling and sorting by the class label and the time
attributes as the time series classification algorithms assume the
data to be in a chronological sequence. We normalize the predictors
to make them be treated equally in the classification model.

𝑥
′
𝑚 =

𝑥𝑚 − 𝑥𝑚𝑖𝑛𝑚

𝑥𝑚𝑎𝑥𝑚 − 𝑥𝑚𝑖𝑛𝑚
(1)

where 𝑥𝑚𝑖𝑛𝑚 and 𝑥𝑚𝑎𝑥𝑚 are theminimum andmaximum of the𝑚𝑡ℎ

sensor, ∀𝑚 ∈ {1, 2, ..., 𝑀}. Normalizing the input values between
[0,1] is to scale each attribute individually.

4.2 Segmented Feature Generation (SFG)
Training a multivariate time series (𝑀𝑇𝑆) model is expensive. We
need to find an approach to train the neural network faster. We em-
ployed the SFG algorithm to extract important features from𝑀𝑇𝑆 .
It also reduces the state space and results in decreasing the training
time. Figure 1 depicts the main steps in the data processing pipeline.
After preprocessing the raw data, the output passes through the
SFG algorithm which composes of two phases: feature generation
and selection, and bitmap generation. Afterward, it goes through
the neural network for classification.

Algorithm 1: The segmented feature generation algo-
rithm.
function segmented_feature_generation (𝑀𝑇𝑆)
Input :multivariate time series𝑀𝑇𝑆 = 𝑋 ∈ R𝐷×𝑀×𝑇 .

Output :multivariate time series
𝑆𝐹𝐺_𝑀𝑇𝑆 = 𝑋

′ ∈ R𝐷×𝐹×𝑇 ′
, where 𝑇 ′ =𝑊 ∗𝑀

1. transpose𝑀𝑇𝑆 per driver (𝑦):𝑀𝑇𝑆𝑇 = 𝑀𝑇𝑆𝑇 .
2. split𝑀𝑇𝑆𝑇 into𝑊 segments:
𝑆𝑀𝑇𝑆𝑇 = 𝑠𝑝𝑙𝑖𝑡_𝑝𝑒𝑟_𝑐𝑙𝑎𝑠𝑠_𝑙𝑎𝑏𝑒𝑙 (𝑀𝑇𝑆𝑇,𝑊 ).
3. generate 𝐹 features from 𝑆𝑀𝑇𝑆𝑇 for each segment in all
drivers (𝐷): 𝐹𝑆𝑀𝑇𝑆𝑇 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑆𝑀𝑇𝑆𝑇, 𝐹 ).

4. compute the bitmap (𝐵𝑀𝑇𝑆𝑇 ) by scaling the data per
each variable (𝑚): 𝑥 ′𝑚 =

𝑥𝑚−𝜇𝑚
𝜎𝑚

.
5. reshape 𝐵𝑀𝑇𝑆𝑇 into multivariate time series:
𝑆𝐹𝐺_𝑀𝑇𝑆 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (𝐵𝑀𝑇𝑆𝑇, 𝐷, 𝐹,𝑊 ∗𝑀)
return 𝑆𝐹𝐺_𝑀𝑇𝑆

We summarized overall processing sequences in Algorithm 1.
Let 𝐷 represent the number of drivers and 𝐹 denotes the number
of generated features. The length of MTS in the input (𝑋 ) is 𝑇
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Figure 2: The architectures of LiveDI.

and in the output (𝑋
′
) is 𝑇

′
. SFG transforms the input of 𝑀𝑇𝑆

into its transpose (𝑀𝑇𝑆𝑇 ) which is sent to the sliding window
segmentation, to split the data into𝑊 sliding windows. SFG uses
a non-overlapped sliding window to extract a summary for each
window. The generated features are a set of statistics about the data
(i.e., 𝜇, median, absolute energy, 𝜎 , 𝜎2, minimum value, maximum
value, 𝑠𝑘𝑒𝑤 , kurtosis, mean squared error, and mean crossings).
Next, the algorithm generates the bitmap by scaling the transformed
features [16]. Normalizing features is very important to enhance
the efficiency of the classification model as neural network suffers
from large values [17]. It reduces the required time for training the
neural network, and increases the performance by preventing bias
to large input values [18].

4.3 Real-time Driver Classification
Two key neural network architectures employed to build the clas-
sification model are GRU and FCN. We first describe them then
discuss their combination.

4.3.1 Gated Recurrent Units Network (GRU). It addresses the van-
ishing gradient problem of LSTM in a long time series [19]. The
update gate prevents the problem as it is designed to learn the
amount of past information required to flow for future information.
GRU is trained faster than LSTM [20]. It is also similar to LSTM on
the ability to learn the pattern of the long-short term. GRU is used
to find high-level features at several time steps which increase the
performance [21]. It is designed to train a neural network model
faster and more efficiently. Below are the update equations:

𝑧𝑡 = 𝜎 (𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1)
𝑟𝑡 = 𝜎 (𝑊𝑟𝑥𝑡 +𝑈𝑟ℎ𝑡−1)

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑡 +𝑈 (𝑟𝑡 ⊙ ℎ𝑡−1))

ℎ𝑡 = (1 − 𝑧𝑡 )ℎ𝑡−1 + 𝑧𝑡 ℎ̃𝑡

(2)

where 𝑧𝑡 and 𝑟𝑡 are the update and the rest gates at time 𝑡 . ℎ̃𝑡
denotes to the current memory content, and ℎ𝑡 represent the final
memory at the current time step.𝑊 and 𝑈 denote to the weight
matrices.

4.3.2 Fully Convolutional Networks (FCN) . Fully Convolutional
Networks (FCN) are efficiently used in discovering the semantic
segmentation of pictures [22]. The convolution operation contains
of three 1-D convolution layers. ⊗ denotes the convolution operator.



The basic convolution block is formulated as follows:
𝑦 =𝑊 ⊗ 𝑥 + 𝑏
𝑠 = 𝐵𝑁 (𝑦)
ℎ = 𝑅𝑒𝐿𝑈 (𝑠)

(3)

BN is used to reduce the learning time and to support the generaliza-
tion. FCN uses a low computation cost rectified linear units (ReLU)
with BN for lower computation cost after each 1-D convolution.

We use squeeze-and-excite (i.e, computational block) after the
layer BN and ReLU, to update channel feature responses by dis-
covering interdependencies between the channels [23, 24]. The
computational block is built for any transformation 𝐹𝑡𝑟 : 𝑋 →
𝑈 ,𝑋 ∈ R𝐻 ′×𝑊 ′×𝐶′

,𝑈 ∈ R𝐻×𝑊 ×𝐶 . The set of filter kernel is rep-
resented by 𝑉 = [𝑣1, 𝑣2, ..., 𝑣𝐶 ] where 𝑐 is the 𝑐𝑡ℎ filter for the
corresponding channel of 𝑋 . The output of 𝐹𝑡𝑟 is represented by
𝑈 = [𝑢1, 𝑢2, ..., 𝑢𝐶 ].

𝑢𝑐 = 𝑣𝑐 ⊗ 𝑋 =

𝐶′∑
𝑠=1

𝑉 𝑠
𝑐 ⊗ 𝑋𝑠 (4)

𝑉 𝑠
𝑐 represents the 2D spatial kernel. Squeeze is employed to embed
global information by applying the global average pool to compute
channel-wise statistics. a statistic 𝑧 ∈ R𝐶 is calculated by reducing
the dimensions of𝑈 by 𝐻 ×𝑊 spatial dimensions. 𝑐𝑡ℎ element of 𝑧
is computed by the following formula:

𝑧𝑐 = 𝐹𝑠𝑞 (𝑢𝑐 ) =
1

(𝐻 ×𝑊 )

𝐻∑
𝑖=1

𝑊∑
𝑗=1

𝑢𝑐 (𝑖, 𝑗) (5)

To aggregate the statistics data, the excite operation is calculated
after the squeeze operation by implemented a gating mechanism
using sigmoid activation function. The excite is computed by:

𝑠 = 𝐹𝑒𝑥 (𝑧,𝑊 ) = 𝜎 (𝑔(𝑧,𝑊 )) = 𝜎 (𝑊2𝛿 (𝑊1𝑧)) (6)

𝑊1 and𝑊2 are the dimensionality decreasing/ increasing dimension
layers. ReLU is depicted by 𝛿 . The output of squeeze-and-excite is
calculated by scaling the𝑈 with the activation, as follows:

𝑥𝑐 = 𝐹𝑠𝑐𝑎𝑙𝑒 (𝑢𝑐 , 𝑠𝑐 ) = 𝑠𝑐 .𝑢𝑐 (7)

�̃� = [𝑥1, 𝑥2, ..., 𝑥𝐶 ] is the channel-wise multiplication by rescaling
𝑢𝑐 with 𝑠𝑐 ∈ R𝑇 , where 𝑇 denotes to the temporal dimension to
calculate the channel-wise statistics. The first two 1-D convolution
layers with two BN and ReLU are followed by the squeeze-and-
excite computational unit. FCN has the global pooling operation
after the three convolution layers, to address the overfitting issue
and to decrease the number of weights.

4.3.3 Combining GRU and FCN:. Before combining GRU and FCN
architectures, we appended a BN layer and the 𝑡𝑎𝑛ℎ activation
function as shown in Figure 2. The experiment on our dataset
shows that this extension for multivariate time series enhances the
model performance. This combination is defined by:

ℎ𝑐 = ℎ𝑔 ⊕ ℎ𝑑

𝑦 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (ℎ𝑐 )
(8)

where ⊕ is the concatenation operator, ℎ𝑐 is the output of concate-
nating the global pooling (ℎ𝑔 ) with the dropout (ℎ𝑑 ). The class label
is predicted by the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 activation. The reason behind adding
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Figure 3: Normalized examples of two drivers’ driving pat-
terns during the first 100 time steps. The color encoding: red
(accelerator pedal), green (filtered accelerator pedal), blue
(acceleration speed longitudinal), orange (brake switch),
blue-violet (road gradient), dark olive green (acceleration
speed lateral), black (steering wheel speed), and magenta
(steering wheel angle).

a new layer (BN) is to improve the GRU layer by scaling the param-
eters [25]. BN helps in stabilizing and improving the performance
of the model. It also prevents the neural network from saturating
nonlinearities issue.

5 COMPETING APPROACHES
For the first 3 baseline methods, the multivariant time series are con-
verted from 3-D to 2-D shape (the same shape as the raw data [8]),
since the𝑀𝑇𝑆 shape is not suitable for these methods. The follow-
ing techniques are used as baselines for comparison:

Random Forest: It is also called the random decision forests.
The Random Forest algorithm was developed by Breiman [26]. Dur-
ing the training process, the algorithm selects features randomly to
build several decision trees from the training dataset with replace-
ment using the bagging technique.

XGBoost: Chen created a classification algorithm called eX-
treme Gradient Boosting XGBoost [27]. XGBoost is a scalable tree
boosting technique based on the gradient boosting machine [28].
XGBoost can be run in parallel to reduce the training time and have
been used in cybersecurity domain [29].

TPOT: The Tree-Based Pipeline Optimization Tool (TPOT) is
an Automatic Machine Learning tool (AutoML) [30]. TPOT uses
stochastic search algorithms (e.g., genetic programming) and the
pipelines’ tree representation to automatically build machine learn-
ing pipelines.

MLSTM-FCN: Multivariate LSTM-FCNwith squeeze-and-excite
block (i.e., called MLSTM-FCN) is used for predicting multivariate
time series [24].

MALSTM-FCN: These are variants of MLSTM-FCN in which
the LSTM is added with attention technique [24].

6 EXPERIMENTS AND RESULTS
6.1 Dataset Description
The dataset contains two paths [8]. It is extracted from real driving
(51 sensors) using the KIA Motors Corporation’s model in South
Korea. Ten drivers participated in this experiment for approximately
23 hours. We used the first path (i.e., 45908 examples), and only
8 attributes were extracted from mechanical sensors instead of
15 sensors used in the previous research [8]. Figure 3 shows the 8
sensors for two drivers during the first 100 time steps of the training
dataset. We can see that the two drivers have different speeding
habits or the driver one steers smoother while the other driver



Table 1: Overall performance summary of our proposed approach compared with baseline algorithms using metrics. The bold
face represents better performance.

Algorithm Accuracy Precision Recall F1-score Kappa Training
(secs)

Epochs

Random Forest 0.64 0.64 0.64 0.63 0.59 65 -
XGBoost 0.51 0.52 0.51 0.51 0.45 142 -
TPOT 0.66 0.66 0.66 0.65 0.61 127 -

MLSTM-FCN 0.60 0.55 0.60 0.56 0.55 361 150
MALSTM-FCN 0.60 0.55 0.60 0.56 0.55 361 150

LiveDI 0.90 0.85 0.90 0.86 0.88 17 15

shows a larger fluctuation. We split the dataset into training (50%)
and testing (50%) datasets.

6.2 Overall Performance Summary
Table 1 shows the comparative results of our proposed algorithm
against the baseline methods. In this experiment, we train and test
all algorithms using the whole dataset (i.e., 1500 examples for each
driver). The classical traditional algorithm did not perform well
(accuracy between 51% to 66%). The root cause of this issue is that
these algorithms are not scalable for big data. The good trait of
the Random Forest algorithm comparable with other traditional
algorithms is the execution time (65 seconds) to train the model. It
is clear that XGBoost took a long time (2 minutes and 22 seconds)
to finish training, resulting in a bad performance (51%). We set the
maximum running time for TPOT AutoML tool to be 2 minutes; the
early stop may affect the performance of the tool as it searches for
the best algorithm and its parameters by applying an optimization
algorithm (e.g., the genetic algorithm). The best traditional clas-
sification algorithm produced 66% accuracy using the TPOT tool.
We believe the traditional algorithms are not suitable for real-time
classification because of the poor performance and/ or the long
training time to generate a classification model.

MLSTM-FCN and MALSTM-FCN gave unpleasant results (i.e.,
accuracy 60%) for 150 epochs. This is because they require a larger
number of iterations to perform better, which consumes a longer
time to train the models especially with big data (i.e., 12000 values
per driver = 1500 * 8, where 1500 is the length of MTS and 8 is the
number of sensors). As a result, it took approximately 6 minutes
to run each algorithm. Our proposed LiveDI addresses all of these
issues. We achieve our target by incorporating SFG in LiveDI to
find a fast training model and obtain high performance (i.e., 90%
accuracy, 85% precision, 90% recall, 86% F1-score, 88% kappa). We
trained all the training dataset using LiveDI for only 15 epochs in 17
seconds. Faster training and learning time make LiveDI applicable
for real-time driver classification.

6.3 The Effect of SFG
Figure 4 shows that SFG is very effective in our proposal deep neural
network architecture. In this experiment, we ran LiveDI with SFG
and without SFG using 13 epochs and 2 sliding windows. Different
lengths of multivariate time series were used (the first 15, 60, 100,
1000, and 1500 of the whole multivariate time series). LiveDI with
SFG outperformed the performance of its variant without SFG. This
is because the other variant did not reduce the state space. F1-score
of LiveDI increased dramatically in increasing the size of the dataset.
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Figure 4: Comparing LiveDI performance incorporating SFG
and without SFG algorithm.
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Figure 5: LiveDI performance by varying time windowW.

The F1-score was between 56% and 86%. However, the other variant
only gave F1-score between 22% and 60%. Additionally, using SFG
accelerated the training process, where LiveDI finished training in
17 seconds; however, LiveDI without SFG took 14 to 84 seconds.
Therefore, the experiment’s results show the usefulness of SFG by
speeding up the training process keeping high performance.

6.4 Time Window Segmentation Effect
We ran the LiveDI in the whole training dataset for 15 epochs using
different sliding window sizes (i.e., 1, 5, 10, 15, and 20) as shown
in Figure 5. As an example using SFG, for one driver behavior, the
size of MTS using 1 sliding window is equal to 88 (11 features *
1 window size * 8 variables) while the size of MTS is 440 using
5 sliding windows. For 20 sliding windows, the MTS size is 1760
which is increased approximately 17% of the size of original MTS
without using SFG. Generally, increasing window sizes reduces the
performance of the LiveDI, as it increases the input size (MTS) of
the neural network having a fixed number of epochs. LiveDI needs
more epochs to train the long MTS for a large number of sliding
windows (e.g., 20). As we fixed the number of epochs to 15, the
performance dramatically dropped to 60% (i.e., accuracy and recall).



0.55
0.65
0.75
0.85
0.95

15 60 100 1000 1500 15 60 100 1000 1500 15 60 100 1000 1500 15 60 100 1000 1500 15 60 100 1000 1500

Accuracy Precision Recall F1-score Kappa

Size of Time Series               Size of Time Series             Size of Time Series                  Size of Time Series                 Size of Time Series
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6.5 The Length of The Multivariate Time Series
Effect

The purpose of this Section is to show how the size of the training
dataset does not affect the performance of our proposed methods
using more than 100 time steps. We ran LiveDI using the first 15, 60,
100, 1000, 1500 time steps for 15 epochs as shown in Figure 6. We
trained LiveDI in less than 17 seconds in all of these experiments
as their MTS had been decreased to a fix state size since we set the
samewindow size to 2. For an example of the whole training dataset,
LiveDI reduces MTS of each driver from 12, 000 (𝑇 ×𝑀 = 1500 ∗ 8)
to 176 (𝐹 ∗𝑊 ∗𝑀 = 11 ∗ 2 ∗ 8). Executing neural networks in LiveDI
with a 98.53% decrease in the state space reduced the required
number of epochs and the time to learn the temporal patterns. Using
the reduction technique in LiveDI with proper parameters (e.g.,
window size = 2) even with a small number of iterations, effectively
decreases the training time and increases the performance (e.g.,
accuracy 90%) for medium and long sequences. LiveDI did not
perform well with the short multivariate time series (i.e., length
of the multivariate time series < 100) because the statistical values
(i.e. features generated by LiveDI) did not provide distinguishable
information for each driver’s behaviors, and/ or the number of
epochs was not enough to train the model.

7 CONCLUSION
In this paper, we proposed LiveDI, a new approach to identify
drivers from their driving behaviors. LiveDI employs the SFG algo-
rithm for generating features while reducing the input size. Addi-
tionally, LiveDI utilizes GRU (an enhancement of LSTM) combin-
ing with FCNs to learn better long-short term temporal patterns.
Through an experiment on 10 drivers performing in real car driving
environment, our approach showed 90% accuracy and 86% F1-score
which outperformed the state-of-art baseline methods.

For future work, we plan to address the cold start problem when
a little or no driving behavior of an authorized driver is found in
the system. Then, we would like to extend the number of drivers
and deploy for other real on-road driving experiments.
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